JSEOGRÁFICAS **ICAMT**

de 9 a 14 de outubro de 2016 São Paulo

ICAMT - Comitê Internacional para Arquitetura e Técnicas de Museus do ICOM - Conselho Internacional de Museus

Patrocinio **BANCO DO BRASIL**

ToornendPartners

Apolo Institucional

Organização

Sustainability for museums

Jean Hilgersom

October 11, 2016

What is Sustainable?

- Long-term thinking
- Needs of today
- *Needs of the future*
- Health and Vitality
- Resources

What is Sustainable Development?

What is Sustainability?

- Talent to be sustainable
- Talent to develop
- Talent to improve


Sustainability in your Museum?

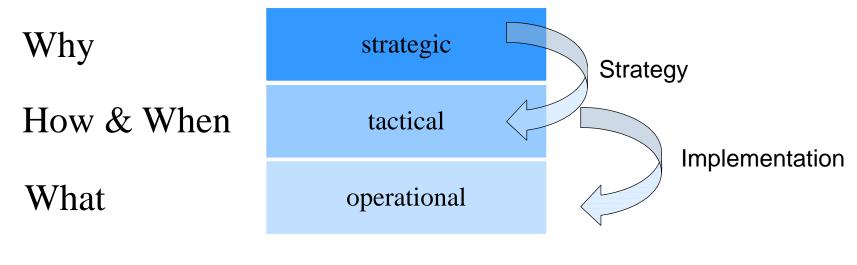
ToornendPartners Building culture

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

Policy on Sustainability

- Museum buildings equipped with several sustainability features are not necessarily sustainable, the museum organization implement a policy and controls.
- To achieve a truly sustainable (museum) building, commitment with the museum vision, where sustainability as a target is elaborated, is essential.
- In order to embed this vision in the organization, leadership in the organization is required.

Commitment



Commitment

Leadership

levels

Leadership

Why

How & When

What

strategic

tactical

operational

vision targets / goals leadership

action- / implementation plan maintenance plan communication

implementation measurements commitment

levels

Implementation

New Museum Building and Major Renovations Existing Museum Building

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Energy Efficiency
- 2. On-site Renewable Energy
- 3. Measurement and Verification
- 4. Benchmarking

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Energy Efficiency
 - energy performance
 - approach of integrated design
 - computer simulation
- 2. On-site Renewable Energy
- 3. Measurement and Verification
- 4. Benchmarking

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Energy Efficiency
- 2. On-site Renewable Energy
 - wind
 - solar
 - tidal
 - biomass
 - geothermal
 - ...
- 3. Measurement and Verification
- 4. Benchmarking

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Energy Efficiency
- 2. On-site Renewable Energy
- 3. Measurement and Verification
 - Meters by Type of Use
 - Meters by Level
- 4. Benchmarking

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Energy Efficiency
- 2. On-site Renewable Energy
- 3. Measurement and Verification
- 4. Benchmarking
 - BREEAM
 - LEED
 - ENERGY STAR

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Optimize Energy Performance
- 2. On-site Renewable Energy
- 3. Measurement and Verification
- 4. Benchmarking

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

1. Optimize Energy Performance

- Improvement in use
- Collect data to make decisions

2. On-site Renewable Energy

- Investigate the use of solar panels
- Life cycle costing by replacements

3. Measurement and Verification

- Collect data to make improvements
- 4. Benchmarking

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Indoor Water
- 2. Outdoor Water
- 3. Measurement
- 4. Water efficient products

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Indoor Water
 - Reduce the use of potable water
 - Consider the use of rainwater and wasted water
- 2. Outdoor Water
- 3. Measurement
- 4. Water efficient products

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Indoor Water
- 2. Outdoor Water
- 3. Measurement
- 4. Water efficient products

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

1. Indoor Water

- Improve the use of water
- 2. Outdoor Water
 - Use no potable irrigation water
- 3. Measurement
 - Collect data to make improvements
- 4. Water efficient products
 - Replacements

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Ventilation and Thermal Comfort
- 2. Moisture and Humidity Control
- 3. Daylighting
- 4. Low-emitting materials

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Ventilation and Thermal Comfort
 - balanced use for collection, building and human beings
 - use the inside air several times
- 2. Moisture and Humidity Control
- 3. Daylighting
- 4. Low-emitting materials

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Ventilation and Thermal Comfort
- 2. Moisture Control
- 3. Daylighting
- 4. Low-emitting materials

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

1. Ventilation and Thermal Comfort

- Reconsider use

2. Moisture Control

- What is the standard
- Dew Point analysis

3. Daylighting

- Automated lighting controls

4. Low-emitting materials

- Renewals
- Exhibitions, carpets

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Recycled Content
- 2. Environmentally Preferable Product
- 3. Waste Management
- 4. Material Management

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Recycled Content
 - Use recycled materials
- 2. Environmentally Preferable Product
 - Find out where materials come from
- 3. Waste Management
 - Waste management plan
- 4. Material Management

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Recycled Content
- 2. Environmentally Preferable Product
- 3. Waste Management
- 4. Material Management

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

1. Recycled Content

- Use recycled materials
- 2. Environmentally Preferable Product
 - Find out where materials come from
- 3. Waste Management
 - Waste management plan
- 4. Material Management

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Leadership
- 2. Integrated Design
- 3. Commissioning

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

1. Leadership

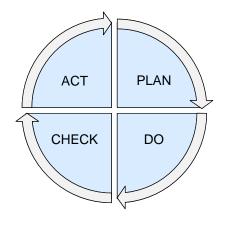
- Vision
- Plan what you do, do what you plan
- Communicate

2. Integrated Design

- Integrated planning and design process
- 3. Commissioning

- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

- 1. Leadership
- 2. Sustainable maintenance practices
- 3. Building Management plan


- Energy Use
- Water Use
- Indoor Environmental Quality
- Impact of Materials
- Management

1. Leadership

- Plan what you do, do what you plan
- 2. Sustainable maintenance practices
 - operational performance goals
- 3. Building Management plan

Implementation

- From vision to implementation
- Planning the strategy
- Continuous quality improvement

- ACT define a vision

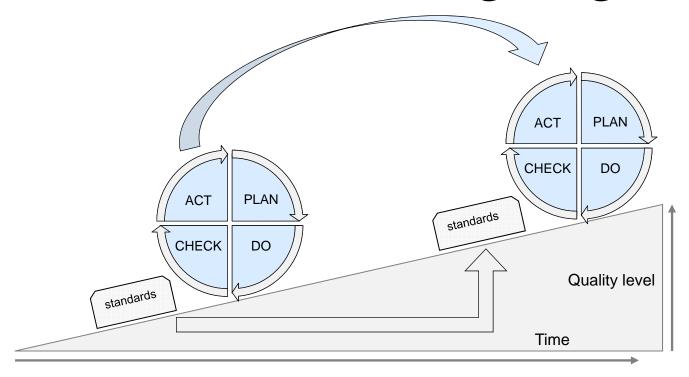
- PLAN construct the vision and define a strategy

- DO implement vision through strategy

- CHECK develop and improve goals in vision

How to do things right

- Specify the targets you want to achieve in measurable terms
- Communicate vision and results to create commitment in organization
- Use 'Life Cycle Costing' for investments
- Check and accrediting methods
 LEED BREEAM Greencalc



How to do things right

Management tools

- Continuous quality improvement
- Stagnation equals decline
- Set new standards
- Sustainability never ends!

How to do things right

- Talent to be sustainable
- Talent to develop
- Talent to improve

Never ends!

More Information:

- Book: The Green Museum, Brophy and Wylie
- Website: https://portfoliomanager.energystar.gov
- Website: https://sustainabledevelopment.un.org
- Website: http://network.icom.museum/icamt/

-

Sustainability Never Ends!

Thank You!

http://www.toornend.com

ToornendPartners

JSEOGRÁFICAS **ICAMT**

de 9 a 14 de outubro de 2016 São Paulo

ICAMT - Comitê Internacional para Arquitetura e Técnicas de Museus do ICOM - Conselho Internacional de Museus

Patrocinio **BANCO DO BRASIL**

ToornendPartners

Apolo Institucional

Organização

